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Abstract

Climates at the Last Glacial Maximum have been inferred from fossil pollen assem-
blages, but these inferred climates are colder than those produced by climate simula-
tions. Biogeographic evidence also argues against these inferred cold climates. The
recolonization of glaciated zones in eastern North America following the last ice age5

produced distinct biogeographic patterns. It has been assumed that a wide zone south
of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would
have been recolonized from southern refugia as the ice melted, but the patterns in
this zone differ from those in the glaciated zone, which creates a major biogeographic
anomaly. In the glacial zone, there are few endemics but in the BPZ there are many10

across multiple taxa. In the glacial zone, there are the expected gradients of genetic
diversity with distance from the ice-free zone, but no evidence of this is found in the
BPZ. Many races and related species exist in the BPZ which would have merged or
hybridized if confined to the same refugia. Evidence for distinct southern refugia for
most temperate species is lacking. Extinctions of temperate flora were rare. The in-15

terpretation of spruce as a boreal climate indicator may be mistaken over much of the
region if the spruce was actually an extinct temperate species. All of these anoma-
lies call into question the concept that climates in the zone south of the ice were very
cold or that temperate species had to migrate far to the south. Similar anomalies exist
in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels20

gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and
to herbaceous species over trees, which also fits the observed pattern. Most tem-
perate species could have survived across their current ranges at lower abundance
by retreating to moist microsites. These would be microrefugia not easily detected by
pollen records, especially if most species became rare. These results mean that cli-25

mate reconstruction based on terrestrial plant indicators will not be valid for periods
with markedly different CO2 levels.
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1 Introduction

The Pleistocene Last Glacial Maximum (LGM) period of 18 000 years ago has been
widely interpreted as a time of bitter cold in eastern North America when tundra and
boreal forest extended hundreds of miles south of the ice sheets and the temperate
forest of the East retreated to the southern coastal plain, to Florida, and westward into5

Texas and Mexico (Davis, 1983, 1984; Deevey, 1949; Delcourt and Delcourt, 1984,
1993; Jacobson et al., 1987; Maher et al., 1998; Maxwell and Davis, 1972; Overpeck
et al., 1992; Prentice et al., 1991; Ritchie, 1987; Royall et al., 1991; Schoonmaker
and Foster, 1991; Tallis, 1991; Watts, 1970, 1971, 1973, 1979, 1980a, b; Watts and
Stuvier, 1980; Webb et al., 1988, 1993; Whitehead, 1973; Wilkins et al., 1991). This10

reconstruction, which may be called the standard model, is commonly presented in
textbooks (e.g., Bradley, 1999; Delcourt and Delcourt, 1993; Pielou, 1991; Ritchie,
1987; Tallis, 1991). The standard model is based largely on pollen and macrofossil
records. These pollen data have been interpreted qualitatively in some cases, and
in other cases transfer functions or response surface models have been used to infer15

climate from pollen composition, with similar results. By any of these three methods,
the inferred LGM climate is much colder than that simulated (Webb et al., 1993, 1997)
although it has been unclear whether the climate simulations or the vegetation inter-
pretations are wrong. In addition, the vegetation composition at this time is consistently
described as having no analogs in modern periods (Jackson and Williams, 2004).20

In this paper it is argued that both of these anomalies arise primarily from a com-
bination of ambiguous pollen interpretation and the effects of low ambient CO2 at the
LGM which would have altered the relative dominance of different taxa in a manner
that mimics colder and drier climates. In what follows, several types of evidence are
presented that support the contention that LGM climates inferred from pollen data are25

colder than the likely actual climates. Then these various types of evidence are shown
to reconcile with effects of low ambient CO2. The focus of this study is largely eastern
North America for the sake of concreteness, but no-analog vegetation found elsewhere
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at the LGM can be explained by similar mechanisms.

2 Geologic anomalies

By analogy with European mountains, it has been assumed (e.g., Deevey, 1949;
Delcourt and Delcourt, 1984) that the southern Appalachians, particularly the Great
Smoky Mountains, should have been covered by permanent ice caps and should have5

generated glaciers. Mountain glaciers produce obvious signs like U-shaped valleys,
striations, and moraines. None of these signs has ever been found in the southern
Appalachians south of Pennsylvania. More recent treatments assume tundra but not
glaciers on the peaks.

The zone south of the ice that is assumed to be tundra in the traditional model should10

have retained some physical signs of tundra soils, such as solifluction, cryoturbation,
ice wedges, and stone sorting, evident today in New England. No such signs have
been found more than a few miles south of the edge of the ice between Wisconsin and
Pennsylvania. For example, Braun (1951) noted that at a site only 15 miles south of
the ice margin in Ohio, evidence of congeliturbation, although present, did not indicate15

severe frost action, an observation also supported by Wolfe (1951). Black (1976) con-
cluded that there is no evidence for permafrost in Illinois, Indiana, and Ohio south of
the ice margin. A number of sources (Burns, 1958; Gooding, 1963; Grüger, 1972a,
b) found evidence for forest vegetation right up to the ice margin throughout the pe-
riod of the last glacial advance in Illinois, Indiana, and Ohio. Farther north and west,20

in Minnesota, Montana, and the Dakotas, the southern glacial margins were frozen to
their beds and signs of permafrost are present (Mickelson et al., 1983). Péwé (1983)
compiled abundant evidence for permafrost from the driftless area of Wisconsin and
from across Pennsylvania, but none from central Illinois east to the edge of Pennsyl-
vania. Péwé (1983) shows some evidence for patterned ground on the high peaks of25

the Appalachians, but only as far south as the southern Virginia-West Virginia border.
Periglacial forms south of this either are undated or are not reliably identified (Péwé,
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1983). Denny (1951) documented frost action in Pennsylvania that diminishes with
distance from the ice margin. There is thus evidence for a band of permafrost and
periglacial climate in Pennsylvania and Wisconsin but none in between. This recon-
struction makes sense because the area of western Pennsylvania is higher in elevation
than are southern Ohio, Indiana, and Illinois. Thus, permafrost (and tundra) was not a5

universal feature of the ice front region as implied by most reconstructions.

3 Taxonomic anomalies

A key species in the reconstruction of LGM climates is spruce (Picea). The pollen
of various species of spruce are very difficult to distinguish. Since all existing spruce
species in eastern North America require a cold climate, they have generally been con-10

sidered together. In this context, pollen profiles dominated by spruce and herbaceous
species have been classified as boreal parkland.

It is now apparent, however, that a major portion of the southern range of spruce may
have been occupied by a now-extinct species (Jackson and Weng, 1999) which was
common in the lower Mississippi valley and east at least to western Georgia. Given that15

fossil stumps of this species can be found growing with oaks and with strictly southern
species, this was likely a temperate spruce. This spruce pollen is thus not necessarily
indicative of cold climates. This may have biased climate reconstructions at the LGM
to a considerable degree.

A similar problem occurs with sedges (Cyperaceae). This taxonomic group has been20

interpreted as diagnostic of boreal or tundra habitats. However, sedges are also com-
mon in grasslands and forests and would have been favored under a low CO2 atmo-
sphere, as will be discussed below.

In both cases, the species have been considered key indicators or diagnostic species
of boreal forest but lumping species is known to produce misleading indicators of cli-25

mate (Finkelstein et al., 2006). The fact that their pollen is found mixed with that of
temperate species further calls into question their indicator status. Inclusion of these
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species/groups in a model that predicts climate from vegetation will create a cold bias.
This analysis also helps explain part of the no-analog vegetation situation.

4 Biogeographic anomalies

The geographic distributions of plants can reveal a great deal about the history of a
region. This is true of evidence for refugia, genetic gradients, distributions of endemics,5

and the existence of races and subspecies.

4.1 Glacial refuge anomalies

The traditional model assumes that temperate forest was forced to retreat to the far
south (Gulf Coast region) by the cold (e.g., Bennett, 1985; Cain et al., 1998; Del-
court and Delcourt, 1984, 1993; Watts and Stuvier, 1980). Hewitt (2004) posits an10

Appalachian refuge, but without citing any data. When we look for fossil evidence for
the migration of temperate forest species to the Gulf Coast and Florida and/or Mexico
(the refugia for deciduous forest in the traditional model, with Mexico being mentioned
mainly in older literature), we encounter a striking lack of evidence. Lakes in the Gulf
Coast area, Texas, and Florida either do not date back far enough (i.e., not as far as the15

LGM) or show a continuous presence of oak-pine associations (including such shrubs
as wax myrtle at Sheelar Lake) similar to those present today (Bryant, 1977; Bryant
and Holloway, 1985; Delcourt and Delcourt, 1993; Givens and Givens, 1987; Jackson
and Givens, 1994; Watts, 1973; Watts and Stuvier, 1980). The most recent pollen
maps do not show any distinct refugia for temperate species, most of which are either20

undetectable or diffusely rare across the region (Williams et al., 2004). It has been
shown (Froyd, 2005; Jackson and Williams, 2004; McLachlan and Clark, 2004) that
rare species can be hard to detect in pollen samples. Thus, data do not support the
existence of a Florida or Gulf Coast refuge or a Gulf Coast migration route to Mexico.
In fact, evidence exists for the presence of many temperate tree species across the25
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region at the LGM, even if they do not show up readily in the pollen record (Jackson
and Williams, 2004).

A related fact is that the high elevation rock outcrop flora of the southern Appalachi-
ans would be expected to be derived from boreal/alpine elements that would have
moved in during the LGM. Instead, Wiser (1998) found very little overlap between the5

flora in the southern Appalachians and high elevation flora in the Presidential Range
mountains of New Hampshire and the White Mountains, while the latter do show the
expected affinities to alpine/tundra floras.

There is thus no documentation for even one southern refuge for northern or Ap-
palachian species except a plausibility argument. That is, while these species could10

have survived in the Gulf Coast region or Florida, there is no pollen or other evidence
that they did so. These species are mostly not found north of the Great Lakes and are
thus not compatible with the assumed boreal climates in the zone south of the ice in
the region east of the Mississippi.

4.2 Genetic gradients15

After the last glacial advance 18 000 years ago, and the beginning of the Holocene,
the North American ice cap began a rapid retreat. Plants colonizing the previously
glaciated lands could potentially spread rapidly over a very large newly deglaciated
area. Such rapid spread causes particular effects on population genetic structure. If a
species was confined to a very small refuge with a small population, a genetic bottle-20

neck combined with homogenization will produce a population with very little genetic
differentiation. As this population spreads across the deglaciated zone, the genetic
uniformity will be maintained for a long time. For trees, only a few hundred generations
have passed since the LGM, too little for either random mutation or local adaptation to
have had much effect. An example of this phenomenon is red pine (Pinus resinosa),25

which occurs largely in previously glaciated terrain and which has very low heterozy-
gosity (Burns and Honkala, 1990). Almost no species can be found matching this
pattern south of the ice sheets, suggesting that species during the Pleistocene were
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not confined to small refugia.
If, on the other hand, a species invades the deglaciated zone from a wide front

with a large initial population and high heterozygosity, the rapid migration will cause
a gradual loss of rare alleles as the distance from the refugial population increases
(Hewitt, 2004). This pattern is seen in lodgepole pine (Pinus contorta), which has high5

heterozygosity in the unglaciated refugia and progressive decrease in heterozygosity
with distance north (Burns and Honkala, 1990). The same genetic structure is seen
in black spruce (Picea mariana) in the formerly glaciated zone, in which northernmost
populations have low mitochondrial DNA diversity (Gamache et al., 2003).

In contrast to these expectations for rapidly migrating populations, species in the10

unglaciated (but supposedly Pleistocene-era tundra or boreal zone) East show deep
DNA divergence (which means long isolation) between separate sub-populations, no
genetic gradients, and high genetic richness (Hewitt, 2004). If these species had been
excluded by cold from the area south of the Great Lakes (southern Appalachians) and
migrated back into this region, genetic diversity gradients should exist but they do not.15

4.3 Distribution of endemics

If tundra and boreal forest/parkland formed zones south of the ice margin in the East,
then temperate vegetation would have had to retreat to the far south to refuges, as is
commonly assumed. The data on endemism seriously constrain theories proposing
large-scale migrations of vegetation at the LGM. Many endemics occur just south of20

the ice margin; almost none are found within the glaciated area, and those that do
generally are either hybrids or are recently derived. The only possible explanation for
this observation is that the unglaciated East had climates that these endemic species
could tolerate throughout the glacial period.

Local endemics are species or discrete races with a restricted geographic distri-25

bution (Brown and Gibson, 1983; Cain, 1944). Endemics may arise in a number of
ways. In some cases, a species that is originally widespread may become progres-
sively restricted to a unique habitat as climate changes, physiography changes, or
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other species out-compete it. It thereby becomes a relict species. For example, a
swamp-dwelling species might progressively lose habitat during periods of uplift when
swamps are drained.

A second type of origin of endemics involves evolution in a unique habitat, leading
to the generation of a race, a subspecies, and ultimately a new species. For example,5

in the tropics the species on isolated volcanic peaks are often derived from tropical
lowland elements and are unrelated to those on other mountains. Striking examples
occur in cave populations of animals, with the cave population diverging drastically in
morphology from the normal population. How many specialized species could have
evolved since the LGM is unknown, but data on speciation rates from the fossil record10

(Levin and Wilson, 1976) suggest that very few species could have originated in such
a short time. This is especially true for trees, which have only experienced a few
hundred generations since the LGM. Telltale signs of recent origin for endemics are
the proximity of the parent species, incomplete genetic isolation, and limited morpho-
logic divergence. These signs of recent origin do not apply to most endemics in the15

unglaciated regions but do apply to those found in the recently glaciated regions.
Maps of the distribution of endemic species show that recently glaciated regions lack

endemics. The high frequency of endemics in central Alaska led Hultén (1937) to pro-
pose that a large portion of Beringia remained unglaciated and served as a refuge,
a view since substantiated by geological studies. As Braun (1950, 1951) noted, the20

southern Appalachians, particularly the region of the Cumberland Plateau and the
Blue Ridge escarpment, is a center of both species richness and endemism for the
eastern United States. Both occur because this region has an ancient floristic history
(since at least middle Tertiary time) as the only area of large mountains in the East.
The mountains have a wide variety of soils, climates (often moist and equable), and25

topographies that both provide habitat for many species and encourage endemism by
imposing barriers that isolate populations. Many endemics can be found in this region
across life forms including trees (Abies fraseri), ferns, shrubs, herbaceous plants, fish
(Gilbert, 1987), salamanders, crayfish, and centipedes. The extremely limited distri-
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butions of many endemics in the southern Appalachians pose a real difficulty for any
theory of local extinctions, distant refuges, and subsequent reimmigration, as does ev-
idence concerning the time of their origin. Given the large number of endemics, such a
major forced migration should have caused many extinctions, but very few Pleistocene
extinctions of land plants in eastern North America have been documented (Potts and5

Behrensmeyer, 1992; Roy et al., 1996). As a group, these endemics exhibit many
signs of ancient origin, including high morphologic divergence from related species,
geographic isolation from congenerics, complete reproductive isolation, and edaphic
specialization. A number of endemic plants, for example, have no close relative in the
East, and their nearest congener is in China or Europe. The very few endemics in10

glaciated regions do not exhibit these signs.
A telling example of the significance of endemics is a community centered on sink-

hole ponds in the Blue Ridge Mountain region of Virginia (Church et al., 2003). In
this small 1350 ha area are found disjunct and endemic populations of 70 plants and
animals. The adaptation of these species to this unique habitat would prohibit these15

species from migrating under a changing climate.
We are led to the conclusion that the endemics in the unglaciated region have ori-

gins that predate the LGM and therefore that they survived the glacial climate in the
locations where they are found, whereas endemics in glaciated regions have a recent
origin.20

4.4 Distribution of races and subspecies

The geographic distribution of races and subspecies provides invaluable information for
interpreting past climatic changes. Even though most race and subspecies distinctions
cannot be made using pollen data, such distinctions cannot be ignored. If multiple
distinct races of a species can be identified, then (1) each must have had a separate25

glacial refuge to prevent introgression; or (2) they all evolved since the LGM; or (3) the
bulk of the range of the species was not disturbed during the glacial period. Because,
as noted, finding even a single glacial refuge in the far south has proven problematic,
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finding multiple refugia within which each of the distinct races of these species could
be preserved would seem doubly problematic.

Fagus grandifolia has three distinct races, the gray, red, and white beeches (Bennett,
1985; Camp, 1950; Cooper and Mercer, 1977), which differ on multiple traits. These
three races readily hybridize where their ranges overlap. The genetics data for Lirio-5

dendron point to a number of distinct races. Virginia pine has two distinct races, as
defined by genetics data (Parker et al., 1997); one to the northwest and one to the
southeast of the main Appalachian axis. Although Parker et al. (1997) attribute the ori-
gin of the northwestern population to a postglacial migration from the southeast, based
on its lower genetic diversity (often found in colonizing populations), the substantial10

number of unique alleles found in various northwestern populations suggest that it is
not merely a genetic subset of the southeastern population. Rather, this gives a sug-
gestion of prolonged isolation, possibly throughout the Pleistocene, in which case it had
to remain to the northwest of the mountains during the LGM to remain separate from
the southeastern race. Fraser fir, found in the southern Appalachians, will hybridize15

with balsam fir, but the only hybrids at present are near West Virginia. In all of these
cases the distinct races would have required the existence of multiple refuges in order
to persist.

We may similarly look at closely related species for evidence of LGM distributions.
Sugar maple and Florida maple are not well separated morphologically. Where their20

ranges overlap, they hybridize readily. If sugar maple had migrated to the far south it
would have occupied the same range as Florida maple, in which case the two species
would have merged. A similar problem exists with Virginia pine. This pine is only
kept from crossing with Pinus clausa (a Gulf Coast species) by their considerable geo-
graphic separation (Parker et al., 1997). If Virginia pine had moved down into Florida at25

the LGM, it would have merged with this closely related species. These examples are
just a sample of the many cases where closely related species are today prevented
from crossing by geographic separation but would have merged if crowded together
in a single coastal plain refuge. The races of these several species do not coincide
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geographically, further multiplying the number of required refuges.
The standard model postulates a far south refuge, in which multiple races would

be hard to keep separated, both during the LGM and while they migrated north, but
evidence for this is lacking.

5 Discussion5

The anomalies documented here are not trivial. The biogeographic patterns expected
for rapidly migrating species are observed in the glaciated zone, but not at all in the
unglaciated zone. Boreal zone species exhibit low genetic variation or diversity gra-
dients, but species in the unglaciated zone show high genetic richness, no gradients,
and deep (ancient) DNA divergence between populations. Endemics are very rare in10

the glaciated zone, and endemics in this zone appear to be mostly recent (due to hy-
bridization, for example). Sister species, subspecies, and races are common across
the unglaciated East but not in the glaciated zone. To keep all of these groups sepa-
rate during the Pleistocene so that they did not hybridize/homogenize out of existence
would require multiple LGM refuges, but no such refuges have been found in the far15

South. If the pollen data say one thing and the biogeographic data flatly contradict this
inference, what can we conclude?

There is a possible resolution to this paradox based on climate and CO2 factors.
First, glacial climates are not simply a general cooling of the climate. Glacial epoch
climates were cooler, but more so in summer (Pielou, 1991). Thus, the existence of20

“boreal” species farther south than today does not mean that climates were bitterly
cold, because summer temperatures are the most limiting to boreal tree seedlings.
Second, a factor that also varied during the glacial period is CO2, which was so low
that it caused CO2 starvation. CO2 starvation does not affect all species equally.

At the LGM, about 18 000 years ago, CO2 levels were very low, less than 200 ppm.25

This low level of CO2 constitutes a severe deficiency for growth, and would have shifted
competitive dominance between different plant types, as well as affecting overall vege-
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tation biomass. C4 grasses have a strong advantage over other plants under low CO2
(Cole and Monger, 1994; Farquhar, 1997; Polley et al., 1993, 1995), though not under
low temperatures. Robinson (1994) shows that the extent of stomatal regulation plants
exhibit in response to CO2 level varies by taxa in a manner that suggests that this trait
is a modern adaptation. Ancient taxa such as conifers exhibit little stomatal respon-5

siveness compared to angiosperms. The benefit of stomatal responsiveness trades off
against greater water loss at low CO2 levels resulting from stomates being open longer
(Drake et al., 1997; Saxe et al., 1998). Where water is not limiting, a low CO2 cli-
mate should favor grasses, forbs and angiosperm trees over conifers (Beerling, 1996;
Beerling and Woodward, 1993; Jolly and Haxeltine, 1997; Robinson, 1994; Saxe et al.,10

1998). This suggests that mesic broadleaf trees should have remained competitive in
mesic microsites during the Pleistocene. On most upland sites, however, a low CO2 cli-
mate would favor xeric species such as conifers, which have consistently low stomatal
conductance, and drought-tolerant herbaceous species, including grasses and sedges.
Oaks, as trees with intermediate responsiveness, would have persisted as well. We in15

fact observe extensive open conifer forest replacement of broadleaf forest at the LGM
in eastern North America, with a persistent oak component. Simulation studies also
show that the reduced water use efficiency expected at the LGM would produce a xeric,
open forest (with low leaf area index) south of the ice dominated by conifers (Cowling,
1999; Harrison and Prentice, 2003; Jolly and Haxeltine, 1997). This explains the “no-20

analog” open forest (or parkland) often remarked upon.
Simulations of the effect of low CO2 levels show that it could cause a major lowering

of alpine treelines (Bennett and Willis, 2000; Cowling and Sykes, 1999; Street-Perrott
et al., 1997). Jolly and Haxeltine (1997) simulated the montane ecotone for African
mountains and showed that the entire LGM lowering of treeline at their study site is25

consistent with the effect of low CO2 without assuming any drop in temperature. Lower
treelines at the LGM have typically been taken as evidence for colder temperatures,
but could really be the result of changes in CO2 levels.

If lowered CO2 affected vegetation in eastern North America, what changes would
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be expected? Grasses and other grassland species would be expected to expand their
range into forest, perhaps creating parkland. Forest communities would shift to drought
tolerant species such as pines and oaks, with spruce being particularly able to invade,
as it is the most drought tolerant boreal tree. Significantly, mesic microsites such as
coves, north slopes, and stream valleys would provide refuges for mesic site species5

across their entire original range, especially in the highly dissected Appalachian region,
because the effect would be similar to an overall drying. High precipitation, mideleva-
tion regions such as the Cumberland Plateau and the Southern Blue Ridge Escarp-
ment would provide prominent refuges. In contrast, topography provides much less
protection against extreme cold. An LGM African montane site (Jolly and Haxeltine,10

1997) shows this pattern, with low levels of tropical montane forest pollen persisting in
LGM profiles dominated by ericaceous shrubs. While drought-tolerant boreal elements
such as white spruce (or the extinct temperate Picea crutchfieldii) could have moved
south under a cooler, low CO2 climate, most eastern boreal trees are not drought tol-
erant and would not have been able to move far south. We observe exactly this pattern15

of change in the pollen record, with most boreal trees being absent from the supposed
boreal parkland south of the ice. Several authors have proposed that the southern Ap-
palachians were a refuge (e.g., Braun, 1950; 1951; Church et al., 2003; Harvill, 1973;
Hewitt, 2004). This view now has increased plausibility.

We can compare these results to the situation in Europe. The traditional reconstruc-20

tion of LGM Western Europe has been a treeless steppe-tundra as far south as south-
ern France, with presumed refugia in the Mediterranean areas such as the Iberian
and Italian peninsulas. However, fossils of thermophilous trees and mammals have
been dated to the LGM in Belgium, England, Hungary, Slovakia, and Germany, among
other places (Stewart and Lister, 2001). In addition, populations of numerous trees25

and animals such as Scots pine in Scotland (Stewart and Lister, 2001) and hedgehog
in Germany (Willis and Whittaker, 2000) are either genetically distinct from Mediter-
ranean populations (Scots pine) or have no southern relatives (hedgehog). For these
species, it appears that they persisted throughout the LGM in refugia scattered across
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Europe in what is assumed to be a climate too cold for them to persist. Stewart and Lis-
ter (2001) interpret these refugia, most of those known being fossils from cave sites in
steep valleys, as thermal refuges from the ice age cold. However, steep valleys are not
particularly known for providing thermal refuges in present-day northern habitats. In
fact, in hilly terrain, it is south and west facing midslopes and ridges that are warmest,5

not valleys, which receive less sun and are subject to cold air drainage. It is more likely
that these valleys provided mesic refuges from the combined effects of a drier climate
and the reduced water use efficiency caused by the CO2 effect. The mesic plant com-
munities would provide a home for the animals found there. Just such steep valley
and stream-margin mesic refuges are found today in dry regions across the world. It10

is noteworthy that tree species that went extinct in Europe were less drought tolerant
than surviving species (Svenning, 2004), as predicted by the CO2 effect model. To an
even greater extent than in North America, the reduction of tree cover due to the CO2
effect may have given a false impression of extreme cold in Europe.

In summary, the entire interpretation of LGM vegetation and climate in eastern North15

America may have been biased by the CO2 effect. It was neither as cold nor as dry
as has been assumed. Lower treelines were probably caused by the CO2 effect. The
“no-analog” conifer woodlands are the direct result of changes in water use efficiency
between taxa and the lumping of spruce species and sedge species into generic-level
categories. The presence of spruce in eastern North America was not an indicator of20

a boreal climate. Massive vegetation dislocations and migrations did not occur prior
to ice melt, and the entire LGM unglaciated region acted as a refuge for species of
the eastern deciduous forest. This explains the almost complete lack of tree species
extinctions in this region. It also suggests that the use of plant remains to predict
climate for any period of the past in which CO2 level was appreciably different from25

today may lead to incorrect conclusions unless the differential effect of CO2 on growth
rates of different species is accounted for.
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Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: More efficient plants: A consequence of
rising atmospheric CO2?, Annual Review of Plant Physiology and Plant Molecular Biology,
48, 609–639, 1997.5

Farquhar, G. D.: Carbon dioxide and vegetation, Science, 278, 1411, 1997.
Finkelstein, S. A., Gajewski, K., and Viau, A. E.: Improved resolution of pollen taxonomy allows

better biogeographical interpretation of post-glacial forest development: Analyses from the
North American Pollen Database, Journal of Ecology, 94, 415–430, 2006.

Froyd, C. A.: Fossil stomata reveal early pine presence in Scotland: Implications for postglacial10

colonization analyses, Ecology, 86, 579–586, 2005.
Gamache, I., Jaramillo-Correa, J. P., Payette, S., and Bousquet, J.: Diverging patterns of mi-

tochondrial and nuclear DNA diversity in subarctic black spruce: Imprint of a founder effect
associated with postglacial colonization, Molecular Ecology, 12, 891–901, 2003.

Gilbert, C. R.: Zoogeography of the freshwater fish fauna of southern Georgia and peninsular15

Florida, Brimleyana, 13, 25–54, 1987.
Givens, C. R. and Givens, F. M.: Age and significance of fossil white spruce (Picea glauca),

Tunica Hills, Louisiana-Mississippi, Quaternary Research, 27, 283–296, 1987.
Gooding, A. M.: Illinoian and Wisconsin glaciations in the Whitewater basin, southeastern

Indiana, and adjacent areas, J. Geol., 71, 665–682, 1963.20
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